
Pynamic: the Python Dynamic Benchmark

Gregory L. Lee, Dong H. Ahn, Bronis R. de Supinski, John Gyllenhaal, Patrick Miller∗

Lawrence Livermore National Laboratory, Livermore, CA, USA

{lee218, ahn1, bronis, gyllen, miller220}@llnl.gov

.

Abstract

Python is widely used in scientific computing to facili-
tate application development and to support features such
as computational steering. Making full use of some of
Python’s popular features, which improve programmer pro-
ductivity, leads to applications that access extremely high
numbers of dynamically linked libraries (DLLs). As a re-
sult, some important Python-based applications severely
stress a system’s dynamic linking and loading capabilities
and also cause significant difficulties for most development
environment tools, such as debuggers. Furthermore, using
the Python paradigm for large scale MPI-based applications
can create significant file IO and further stress tools and
operating systems. In this paper, we present Pynamic, the
first benchmark program to support configurable emulation
of a wide-range of the DLL usage of Python-based appli-
cations for large scale systems. Pynamic has already been
used to accurately reproduce system software and tool is-
sues encountered by important large python-based scientific
applications on our supercomputers. Pynamic provided in-
sight for our system software and tool vendors, and our
application developers, into the impact of several design
decisions. As we describe the Pynamic benchmark, we will
highlight some of the issues discovered in our large scale
system software and tools using Pynamic.

1 Introduction

Python is a widely used, interpreted, object-oriented pro-
gramming language. Python’s standard library includes
many high-level data types and advanced functionality.
Interface generators like SWIG [4] can wrap existing C
and C++ code for use within Python. Frequently, users
write modules in C or C++ to extend Python beyond its
base functionality. Many open-source modules exist for
numeric and scientific computing, GUI development, web

∗currently of D.E. Shaw Research, LLC
0This work was performed under the auspices of the U.S. De-

partment of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48 (UCRL-
ABS-230099)

programming, and parallel computing. These properties
make Python a popular choice for rapid prototyping, for
application steering, and for developing complex multipur-
pose codes.

While Python is highly portable, its dynamic nature
can stress operating systems and development environ-
ment tools such as debuggers. Python modules are im-
plemented as dynamically linked libraries (DLLs). Since
DLL symbol and address resolution are performed at run-
time, either applications must use few DLLs or the OS and
file systems must efficiently support this process. Further,
development environment tools must be aware of and track
this dynamic process, which requires efficient mechanisms
to handle runtime changes to the executable code.

For large applications, the number of DLLs can extend
into the hundreds. When validating a new system or mea-
suring tool performance, porting all of these modules may
be very time consuming or may just not be practical. With
some applications, access and licensing restrictions may
even prevent distributing all of the code to third party
vendors. To overcome these limitations, we have developed
Pynamic, a customizable Python dynamic library bench-
mark based on pyMPI [11], a Python extension that pro-
vides access to the MPI communication library. Pynamic
generates a configurable number of Python modules and
utility libraries that can be used to match the footprint of
actual Python-based codes. Pynamic includes the config-
uration settings required to match the footprint of one of
our important large-scale python applications; this config-
uration stresses systems and tools. Thus, Pynamic sup-
ports accurate testing of system aspects stressed by the
full range of Python applications, particularly for large
scale systems. To the best of our knowledge, no existing
benchmark provides Pynamic’s breadth of stress testing.

This paper presents details of the Pynamic benchmark.
We first discuss Python and the system aspects that
Python applications stress in Section 2. Next, we present
details of Pynamic’s implementation in Section 3. Sec-
tion 4 then presents initial results with Pynamic that
demonstrate how it can help guide OS and tool develop-
ment. Finally, our conclusion in Section 5 discusses pos-
sible system software changes that Pynamic might help
motivate for large scale systems.

1

2 Python and pyMPI

Python is a flexible scripting language used for a wide va-
riety of purposes from web applets to console games [3].
Even though applications written purely in scripted lan-
guages may run hundreds of times slower than their com-
piled counterparts, the flexibility and low total user time to
solution makes them attractive. Oftentimes a hybrid ap-
proach is used to bridge the performance gap. In this case,
the scripting language plays the role of coordinator. Inten-
sive computing is done in modules written in a compiled
language like C, C++, or FORTRAN. Wrapper generation
tools like SWIG and F2PY [12] simplify creating Python
modules from compiled source code.

pyMPI was developed to extend Python’s scripting abil-
ities to parallel and distributed codes. It established an
MPI environment in which parallel extension modules are
written. Objects within these modules communicate in-
ternally with MPI. The pyMPI tool launches a Python in-
terpreter for each MPI process with separate communica-
tors. The pyMPI processes can themselves send messages
using MPI-like semantics. pyMPI handles the details of
serializing/unserializing messages using MPI native types
where possible and the Python pickle serialization mecha-
nism elsewhere. This allows coordination code to be writ-
ten with parallel awareness (e.g., selecting the minimum
timestep with mpi.allreduce(dt,mpi.MIN)).

2.1 Scientific Computing with Python

In the mid-1990’s a number of groups discovered that they
could adapt Python to scientific scripting needs. Mod-
ules such as Numeric started to be developed that made
Python useful in a scientific context. Soon, entire compu-
tations could be performed completely within the Python
interpreter. Even large scale parallel computations could
be performed in this way [5].

One of the key advantages that Python offers is the sand-
box effect. Modules and processing can be combined in one
convenient place to simplify processing. A single Python
script can provide setup, simulation, instrumentation, and
postprocessing. Synchronizing these activities through ex-
tant memory instead of through the file system is more ef-
ficient and simpler. Rather than have separate tools that
process input files to output files, a Python script imports
several modules that pass references to data. This ideal sci-
entific exploration programming environment encouraged
the creation of general tools like the SciPy toolkit [10].
This toolkit provides visualization, optimization, statis-
tics, linear algebra, and other handy tools that simplify
writing scientific codes.

2.2 OS, Runtime Systems, and Develop-

ment Tools Consideration

Inarguably, Python’s flexibility provides many benefits to
the high performance computing (HPC) community. The
adoption of this programming language, however, has im-
posed a new class of workloads on several key system soft-
ware components. Python-based scientific applications ex-
ercise and often stress these components in a fashion dis-
tinguished from more traditional HPC programs. Thus,
they expose certain weak links in the HPC system soft-
ware stack. These system aspects may fail to work at all
or may perform so poorly as to make the Python-based
paradigm unusable. Specifically, the heavy use of dynamic
linking and loading can stress the system, from its OS and
runtime system layers to the development environment, in-
cluding debuggers and performance analysis tools. Larger
applications, in terms of code size and number of DLLs,
and larger jobs, in terms of node counts, prove particularly
difficult. Thus, it is clear that we must address these issues
for future extreme scale machines.

We expect this emerging class of applications will con-
tinue to grow in ways that employ an ever increasing num-
ber of dynamic libraries. More functionality will be added
in a compartmentalized manner and jobs will run on an
ever increasing number of nodes. Thus, we need Pynamic,
a benchmark that easily captures current and future ap-
plication profiles.

In the following, we consider several key system software
components and sample problems, sensitive to these new
workloads. Though not exhaustive, the software compo-
nents and problems are the main parameters Pynamic is
designed to capture in testing and stressing a system. We
will also discuss some implications for future systems.

2.2.1 Dynamic Linking and Loading

Dynamic linking defers much of the linking procedure until
a program starts. This deferral facilitates library updates
without requiring all applications that use the updated
library to be re-linked. More importantly, it enables dy-
namic loading and unloading of part of a program. Such
benefits, however, come at the cost of performance over-
heads. To allow the runtime relocation of codes, indirec-
tion mechanisms such as IBM AIX’s Table of Contents [8]
or Excutable Linkage Format’s Global Offset Table [1] are
often employed, incurring extra overheads and ultimately
producing slower codes. Besides the pure costs involved in
hopping through the extra levels of indirection, some com-
monly used dynamic linking schemes such as lazy binding
can increase cache conflict misses.

For traditional HPC programs that only use a handful of
libraries, the costs of dynamic linking and loading do not
outweigh their benefits. But these overheads can become
substantial for Python-based applications, which use DLLs
extensively. For example, one of Lawrence Livermore Na-

tional Laboratory’s (LLNL’s) important production mul-
tiphysics applications uses nearly five hundred libraries.
We have found that OS and runtime DLL support become
significant performance factors at this scale; the sheer vol-
ume of DLLs is the issue, not the operations that they
perform. Building such a large quantity of libraries be-
comes impractical for third-party system and tool vendors
to do testing. Further, many of the libraries have access re-
strictions, such as export control. Thus, a benchmark that
generically captures an application’s DLL profile will allow
system implementers to improve the performance of large
scale dynamic linking and loading without having to deal
with the additional complexity of the actual application.

2.2.2 Operating System

Similarly, Python-based HPC applications demand more
scalability from OS services. Programmers frequently use
Python to splice many interchangeable packages with dif-
ferent characteristics together since they can then choose
which packages to use at runtime, even steering the appli-
cation in response to observed initial results. Thus, many
Python applications have a very large overall code size.
These ever-increasing text sizes conflict with a hard limit
on the text size, such as that of the AIX 32-bit process ad-
dress space, which limits the text size to 256MB. This issue
is exacerbated by the trend toward multicore systems in
which the per-core memory becomes significantly reduced.
Trading off a complex memory management scheme for
simplicity (e.g., disabling demand paging, a trend in con-
temporary massively parallel systems [2]) must factor in
the efficient memory management requirements for large
text sizes.

On extreme scale systems, we must also consider IO sys-
tem requirements. A common practice of staging the exe-
cutable onto the NFS file system while having input data
and output on a parallel file system may no longer prove vi-
able for Python-based applications for extreme scale runs.
Simply put, an NFS file system could not support the level
of parallel accesses without OS extensions such as collec-
tive opening of DLLs.

On the other hand, we must examine the services that
can adversely impact the scalability of the upper client
software stack, notably the development environment tool
chain. For instance, IBM AIX versions prior to 4.3.2 man-
dated a client of the ptrace interface to reinsert all existing
breakpoints on each load or unload event. Such an inter-
face requirement renders client tools inoperable on Python-
based applications beyond a certain scale. Randomizing
the loaded addresses of dynamic libraries, such as in Red-
Hat’s exec-shield scheme [9], can also significantly degrade
the scalability of tools that must compute, maintain or
even re-parse information to deal with the heterogeneous
process link maps of a job. Generally, scalable tools require
the application processes running on a massively parallel
system to have as homogeneous characteristics as possi-

ble. We need benchmarks that easily expose where ser-
vices break this assumption and, thus, significantly stress
the development environment.

2.2.3 Development Tool Chain

Many development tools have performed poorly on Python
based applications. This failure is due in part to function-
ality gaps in the development tools aimed at debugging
or optimizing scripts and native binaries simultaneously.
However, the massive dynamic linking and loading behav-
iors stress even state-of-the-arts tools, particularly ones
that exploit process control interfaces such as ptrace. To
function correctly, tools like the TotalView parallel debug-
ger [13] or the DynInst [7] dynamic instrumentation li-
brary must be notified of every dynamic linking and load-
ing event so that they can update their internal process
representations with respect to the newly loaded images.
The unprecedented number of dynamic linking and loading
events produced by Python-based applications overwhelms
even the best designed update mechanisms.

To demonstrate, consider an application that links and
loads M libraries and runs at N MPI tasks. When running
under tool control, the application tasks must stop and
wait for the tool update mechanism at least M x N times.
Thus, the cost is roughly M x N x T1 where T1 is the time
to complete handling a single event. Even worse, those
events tend to occur early in the execution, either during
binding time or in the beginning of runtime, making the
tool’s startup time unbearable. Besides, the process con-
trol interface of an OS can impose other requirements on
each dynamic linking and loading event like that of AIX
mentioned in the above section. In such a system, the
penalty becomes M x N x (T1 + (B x T2)) where B is
the number of the existing breakpoints and T2 is the time
it takes to reinsert a breakpoint. Even on a medium size
run, the total cost becomes ∼500(shared libraries) x ∼500
(tasks) x (∼10 msec + (∼10 (breakpoints) x ∼1 msec))
= ∼83 minutes! Having to reinsert breakpoints approx-
imately doubles the already excessive ∼41.5 minutes re-
quired just to process M x N libraries. Clearly, we need
benchmarks, like Pynamic, that support evaluation of tool
optimizations that reduce this type of cost.

3 Pynamic Implementation

The heart of Pynamic is the shared object generator that
creates Python modules, collections of C functions that can
be called from Python. Extensions to Python are com-
monly written in C and existing C libraries can also be
interfaced into Python using a wrapper generator such as
SWIG. The code generated by Pynamic isn’t designed to
do any insightful computation; rather it tests a system’s
linking and loading capabilities.

When configuring Pynamic, the user specifies the num-
ber of modules to generate as well as the average number
of functions per module. The actual number of functions
will vary based on a random number; a seed value can be
specified, allowing for reproducible results. The function
signatures vary from zero to five arguments of standard C
types (int, long, float, double, char *). Each module con-
tains a single Python-callable entry function that visits
all of the module’s functions up to a specifiable maximum
depth. Specifically, with the default maximum depth of
ten, the entry function calls every tenth function within
that module. Each function then calls the next function
until a depth of ten is reached, at which point control is
eventually returned back to the entry function. This call
chaining is typical of Python-based applications.

Additional complexity can be added to the generated
code. Many Python modules have dependencies on exter-
nal libraries such as physics packages or math libraries.
Pynamic can mimic these dependencies with the genera-
tion of utility libraries. The user can specify the number of
utility libraries to generate as well as the average number
of functions per library. These utility library functions will
then be called at random by the Python module functions.
In addition, some Python modules are further dependent
on other Python modules. When enabled, Pynamic will
also generate an additional function per module that can
be called by other modules.

Pynamic also creates a Python driver script. This script
imports all generated modules and executes each module’s
entry function. In the presence of pyMPI, the driver will
also perform a test of the MPI functionality. In its default
form, the Pynamic driver is simply a functionality test.
When enabled, the Pynamic driver can also gather per-
formance metrics including the job startup time, module
import time, function visit time, and the MPI test time.
These metrics can provide valuable information when com-
paring a DLL-linked pyMPI to a non-linked, vanilla pyMPI
build and also when exploring various linking and loading
options.

Pynamic supports several different build and run con-
figurations. For example, the shared objects can be linked
into pyMPI at compile time. Several real world codes do
this in order to mitigate the runtime cost of dynamically
loading a Python module during the import command. Al-
ternatively, the Pynamic driver can be run with a vanilla
pyMPI build, or in a non-parallel environment, with a
standard Python build. In fact, running Pynamic both
linked into pyMPI and with a vanilla pyMPI build can
provide some insight into the performance benefits of link-
ing at compile time, as we discuss in the following section.

4 Results

Pynamic’s timing measurements can provide useful insight
to OS, tool, and application developers. We performed

tests on Zeus, a 288 node, Infiniband-connected cluster at
LLNL. Each node has 4 dual core, 2.4 GHZ Opteron pro-
cessors. Zeus runs the Clustered High Availability Operat-
ing System, an OS based on Red Hat Enterprise Linux with
the addition of cluster management support. Performance
numbers were gathered for a Pynamic build designed to
model the executable properties of an important Python-
based multiphysics application at LLNL. The application
incorporates about 500 shared libraries, more than half of
which (57 percent) are Python modules. To match it as
closely as possible, we configured Pynamic with an average
of 1850 functions per library.

4.1 Vanilla pyMPI vs. Linked pyMPI

Our first set of tests compares runs of a vanilla pyMPI
build that imports the modules dynamically to a build with
the generated libraries linked into pyMPI. We gathered the
time to import all of the generated modules as well as the
time to visit all of those modules’ functions. Comparing
the Vanilla row in Table 1 to the Link row shows that
linking all of the shared objects into the pyMPI executable
resulted in a three fold speedup of the module import time,
due in part to link time address resolution and to lazy
procedure binding.

pyMPI time in seconds
version startup import visit total
Vanilla 1.5 152.8 2.9 157.2
Link 5.7 56.4 269.4 331.5
Link+Bind 285.6 58.2 2.8 346.6

Table 1: Pynamic results

Table 1 also shows the execution time for visiting all of
the modules’ functions. These results show that linking
the shared libraries into pyMPI results in a large perfor-
mance degradation, 100 times slower than a vanilla pyMPI
build visiting all of the same module functions. This result
may seem counterintuitive: doing additional symbol and
address resolution at link time had a negative effect on
runtime performance. However, it appears that the differ-
ence arises from the dynamic linker’s behavior with respect
to resolving undefined symbols including the Global Offset
Table (GOT) and Procedure Linkage Table (PLT). Specif-
ically, the vanilla pyMPI version resolves both the GOT
and PLT when the modules are imported as it passes the
RTLD NOW flag to the dlopen call. The linked pyMPI
version, however, does not resolve the PLT at import time
because dlopen does not respect the RTLD NOW flag for
the modules that have already been linked with lazy bind-
ing at program startup. Instead, the PLT is filled when
the functions are first referenced.

To test this hypothesis, we reran the tests with the
LD BIND NOW environment variable set, which causes

the dynamic linker to resolve the PLT at program startup.
We show the results from these tests in the Link+Bind row
of Table 1 (the results for the vanilla build of pyMPI where
unchanged by the environment variable setting). We also
include startup time, the time between program invoca-
tion and the first line of code, which we measure roughly
by sending the current time as a command line argument
and then comparing that value to a timestamp gathered
immediately by the Pynamic driver. The results clearly
show that setting the LD BIND NOW variable shifts the
time required to fill the PLT from function execution time
to program startup time, thus confirming our hypothesis.

To examine the timing discrepencies further, we instru-
mented the code with the Performance Application Pro-
gramming Interface (PAPI) [6], an API to gather hardware
performance counter events. We were specifically inter-
ested in the number of L1 and L2 data and instruction
cache misses. We needed to gather data at the Python
level, but PAPI only has a C interface. To overcome this
limitation, we implemented our PAPI function calls within
a python callable module. This module was then inter-
faced by the Pynamic driver to get the cache miss counts
for both importing the modules and visiting the module
functions. The cache miss counts can be seen in Table 2.

pyMPI import misses visit misses
version L1-D L1-I L1-D L1-I
Vanilla 6269.8 0.47 3.9 18.0
Link 4945.2 0.25 3076.5 19.8
Link+Bind 4945.3 0.26 3.9 17.9

Table 2: Millions of L1 data and instruction cache misses.

Combining the results shown in Table 1 and 2, we can in-
fer several interesting characteristics of this system’s link-
ing and loading capabilities. First, there seems to be a
general inefficiency in the LINUX dlopen implementation
when it deals with pre-linked shared objects. The dlopen
call is supposed to increase only the reference count for
the requested shared object if it has already been loaded,
as is the case for the Link and Link+Bind test. However,
the import time of either test is only a three fold speedup
over the Vanilla build’s import time, which includes ref-
erence counting as well as the core loading and binding
functionality.

Second, it reveals that the lazy binding mechanism of
this system can significantly increase data cache conflict
misses. With lazy binding, the runtime has to transfer
control to the dynamic linker whenever a function in an
external dynamic library is first referenced. The dynamic
linker then resolves the address of the external function for
this library, updating the PLT for future references. The
frequency at which this task is performed is further exas-
perated by the fact that each dynamic library maintains
its own PLT that is not updated by another library’s ref-

erences. The cache miss counts in Table 2 indicate that
such runtime binding operations for dynamically linked ap-
plications are memory intensive on their own. Clearly, the
memory intensive binding operations performed by the dy-
namic linker increases the eviction rate of reusable compu-
tational cache lines. We theorize that the number of data
cache misses at visit time is even greater for real HPC
Python applications as they could hold more computa-
tional data cache lines before being evicted by the runtime
binding logic.

4.2 Real Application vs. Pynamic Model

To evaluate Pynamic’s ability to model real applications
for HPC development tools, we compared the startup per-
formance of the TotalView parallel debugger between a
Python-based multiphysics application at the Lawrence
Livermore National Laboratory and a representative Py-
namic build. Over the last few years, this application
has consistently exposed performance problems in several
tools, due in large part to its use of an ever increasing num-
ber of DLLs, currently more than five hundred; the startup
performance of TotalView has been representative of those
issues. We first chose a set of parameters to approximate
the aggregate total size of the shared libraries. These pa-
rameters include the text, data, debug, symbol table, and
string table sizes. Our Pynamic build that approximates
these parameters of the multiphysics application consists
of 280 Python modules and 215 utility libraries, each av-
eraging 1850 functions. As shown in Table 3, the resulting
DLLs exhibited similar properties to the actual applica-
tion.

section real app Pynamic
Text 287 665
Data 9 13
Debug 1100 1100
Symbol Table 17 36
String Table 92 348
total 1504 2162

Table 3: Size comparison in megabytes of a real application
and its Pynamic model.

Our test was performed running the multiphysics appli-
cation and its representative Pynamic build at thirty-two
MPI tasks. We measured the tool’s startup time that is
composed of two phases. The first phase measures the time
for the debugger to launch a parallel job and attach to all
the tasks at their program startup. Thus, it includes the
time for the tool to update the link maps and the symbol
tables of the parallel processes for all pre-linked dynamic
libraries. The second phase startup measures the tool’s
ability to handle dynamic loading events generated by ini-
tal Python import calls. The time comparisons for this

test can be seen in Table 4. These results include the first
invocation, Cold Startup, as well as a subsequent invoca-
tion, Warm Startup. The Warm Startup was about twice
as fast as the Cold Startup for both Pynamic and the ac-
tual application. We speculate that this speedup is due to
TotalView’s ability to cache the information from the first
run and use it for subsequent runs. Overall, these results
show that the Pynamic build is accurate enough to capture
TotalView’s behavior against the actual application.

Cold/Warm startup metric real app Pynamic
Cold Startup 1st phase 5:28 6:39
Cold Startup 2nd phase 3:35 3:21
Cold Startup total 9:03 10:00
Warm Startup 1st phase 1:39 1:01
Warm Startup 2nd phase 3:34 3:10
Warm Startup total 5:13 4:11

Table 4: TotalView starup time comparison (min-
utes:seconds) between a real application and its Pynamic
model.

5 Conclusion and Future Work

We have presented the need for a Python benchmark in the
HPC community as well as Pynamic, our response to this
need. Pynamic creates a user specified number of Python
callable and pure C dynamically linked libraries that can
emulate the signature of Python applications. The result-
ing benchmark provides significant insight into the per-
formance of large scale system software and development
environment tools.

We have several plans to use Pynamic to test additional
system characteristics that can be stressed by Python ap-
plications. For instance, new and even existing extreme
scale systems with hundreds of thousands of compute
nodes will present new challenges to the common practice
of loading DLLs from an NFS file system. Pynamic will
help determine the scalability of this current practice and
thus help prepare for future extreme scale systems. We
are also interested in examining the scaling characteristics
of Pynamic with respect to the number of DLLs as well as
the size of the DLLs.

We have envisioned several enhancements that may pro-
vide even further insight into the nature of large scientific
Python applications. For example, Pynamic currently cov-
ers one hundred percent of the functions generated in a
Python module, a property that is not exhibited by real
codes. Allowing Pynamic to be configured with a speci-
fied code coverage would allow us to gain further insight
regarding the benefits of linking the DLLs at link time and
optimize the dlopen options. We also could support vary-
ing the generated function bodies to represent the static
and runtime properties of real codes more accurately.

References

[1] Tool Interface Standard (TIS) Exe-
cutable and Linking Format (ELF).
http://x86.ddj.com/ftp/manuals/tools/elf.pdf.

[2] N. Adiga and et al. An Overview of the BlueGene/L
Supercomputer. In Proceedings of IEEE/ACM Super-
computing ’02, pages 1–21, Baltimore, MD, 2002.

[3] J. Asbahr. Developing Game Logic: Python
on the Sony Playstation 2 and Nintendo
GameCube, 2002. Presentation available at
http://conferences.oreillynet.com/presentations
/os2002/asbahr jason.zip.

[4] D. Beazley. Simplified Wrapper and Interface Gener-
ator. http://www.swig.org.

[5] D. Beazley and P. Lomdahl. High Performance Molec-
ular Dynamics Modeling with SPaSM : Performance
and Portability Issues. In Proceedings of the Work-
shop on Debugging and Tuning for Parallel Computer
Systems, pages 337–351, St. Petersburg, FL, USA,
1994.

[6] S. Browne, C. Deane, G. Ho, and P. Mucci. PAPI: A
Portable Interface to Hardware Performance Coun-
ters. In Proceedings of Department of Defense
HPCMP Users Group Conference, 1999.

[7] B. Buck and J. Hollingsworth. An API for Runtime
Code Patching. The International Journal of High
Performance Computing Applications, 14(4):317–329,
2000.

[8] B. Cobb and et al. AIX Linking and
Loading Mechanisms, 2001. http://www-
1.ibm.com/servers/esdd/pdfs/aix 11.pdf.

[9] U. Drepper. Security Enhancements
in Red Hat Enterprise Linux, 2004.
http://people.redhat.com/drepper/nonselsec.pdf.

[10] E. Jones, T. Oliphant, P. Peterson, and et al.
SciPy: Open Source Scientific Tools for Python, 2001.
http://www.scipy.org.

[11] P. Miller. Parallel, Distributed Scripting with Python.
In Proceedings of the 3rd Linux Clusters Institute In-
ternational Conference on Linux Cluster: The HPC
Revolution, Chatham, MA, USA, 2002. IEEE Com-
puter Society Press, Los Alamitos, CA.

[12] P. Peterson. F2PY Fortran to Python interface gen-
erator, 2005. http://cens.ioc.ee/projects/f2py2e.

[13] TotalView Technologies. TotalView Debugger.
http://www.totalviewtech.com/productsTV.htm.

